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ABSTRACT 
 
The Technology Transfer project employs a spiral development process to enhance the functionality 
and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool 
by converging existing component technologies onto a transition platform for optimization.  An 
example of this approach is the implementation of advanced computer vision algorithms on small 
mobile robots.   We demonstrate the implementation and testing of the following two algorithms 
useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with 
the Adaboost training algorithm, and 2) human presence detection from a moving platform.   Object 
classification is performed with an Adaboost training system developed at the University of 
California, San Diego (UCSD) Computer Vision Lab.  This classification algorithm has been used to 
successfully detect the license plates of automobiles in motion in real-time.   While working towards 
a solution to increase the robustness of this system to perform generic object recognition, this paper 
demonstrates an extension to this application by detecting soda cans in a cluttered indoor 
environment.  The human presence detection from a moving platform system uses a data fusion 
algorithm which combines results from a scanning laser and a thermal imager.  The system is able to 
detect the presence of humans while both the humans and the robot are moving simultaneously.  In 
both systems, the two aforementioned algorithms were implemented on embedded hardware and 
optimized for use in real-time.  Test results are shown for a variety of environments. 
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1. BACKGROUND 
 
 
The presence of remote-controlled robots on the battlefield continues to escalate, becoming an integral part of our 
military’s arsenal for life threatening scenarios such as addressing the IED threats.  However, there exists a definite 
tradeoff between the value added by the robot, in terms of how it contributes to the performance of the mission, and the 
loss of effectiveness associated with the operator control unit (OCU).  Therefore, a need exists to enhance the 
functionality and autonomy of the current teleoperated systems in order to expand military use and eventually reach the 
vision for human-robot military teams.  The Technology Transfer Project at SSC San Diego serves to rapidly expand 
military robotic capabilities through rapid enhancement of the technology readiness levels (TRLs) of behavior and 
interface methods from the research environment for transfer to acquisition programs.  The approach is to pursue 
autonomous solutions that are common across the UxV domain, as well as advance human-robot interface tools to 
decrease the OCU’s burden on the operator by increasing its usefulness for situational awareness.  To date, the 
Technology Transfer project has produced phenomenal results, contributing mostly to the navigational needs to move 
from tele-operated platforms to autonomous systems.  In FY-05, the focus has shifted to optimize more payload 
technologies to further build upon the navigational behaviors and augment the OCU for better representation of the 
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world both the robot and soldier are operating in.  Computer vision is one key area the Technology Transfer project is 
actively pursuing, as it contributes to the advancement of both platform and interface capabilities 
 

2. OBJECT DETECTION AND RECOGNITION 
 
In this paper, we define “object detection” to be the process of identifying the existence and location of a particular type 
of object in an image. For example, a video stream may be scanned for the presence and locations of soda cans with no 
regard to the brand name of each can. Similarly, we define “object recognition” to be the process of taking detected 
objects and further determining more specific information about these objects, such as the brand of soda. A common 
approach to generic object detection has been to employ a large database of images containing all of the objects that may 
need to be detected. For instance, a previous incarnation of object detection for ROBART III (Figure 1) employed a 
color-correlation-matching algorithm whereby subsets of live images were compared to a database of stored images via 
thresholded correlation matching1. When detecting an object in a subset of an image, this sub-image was often compared 
with every image in the stored database to determine the best match. A database with a large number of objects allows 
the classification algorithm to detect a wider variety of targets. An immediate drawback to this approach is that the 
efficiency of detection decreases as the number of detectable objects grows within the scope of the algorithm's detection 
capabilities. If object detection is to be invariant to scale and orientation, the efficiency of the classification algorithm 
will decrease even more. Instead of working to increase the number of objects that can be detected, we have focused on 
increasing the efficiency and robustness of the initial detection of a single type of object to facilitate a conglomeration of 
modular detection and recognition mechanisms.  

 
Figure 1: ROBART III: The laboratory development platform for the Warfighter’s Associate Concept1, was initially developed to test 
the feasibility of automated response. 
 
When humans enter an area to search for some particular item, such as lost keys, we generally do not look at every 
possible location within that area and mentally compare it to every object we have previously seen. To determine if our 
lost keys are present, we might search for distinguishing features, such as the shiny key ring or the serrated edges of 
keys. Furthermore, we generally don't wander outside into our neighbor's yard looking for our keys if there is no reason 
to suspect they were lost there. When moving through areas where our lost keys are not likely to be, we more likely 
concentrate on detecting and recognizing objects that could cause us to trip and fall. We generally confine our searches 
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to likely places, such as a table in the kitchen, and do not consciously think about all of the other objects that we have 
previously observed. 
 
Our approach to object detection for autonomous mobile robots shares many similarities with the aforementioned 
analogy of finding lost keys. Instead of comparing all sub-images of each image in question to all images in a database, 
we search each video frame for a group of known features for the target object by running each sub-image of the frame 
through a boosted cascade of weak classifiers. A cascade is an optimization method first proposed by Viola and Jones2. 
These classifiers are collectively trained using Adaboost, a method for improving the performance of any weak learning 
algorithm, developed by Freund and Schapire11. This approach is similar to the idea that when searching for lost keys, we 
often look for inherent features of keys that distinguish them from their surroundings. In addition, a logical alternative to 
comparing scenes from the area in question to all known objects is to use a small set of boosted classifiers to search for 
objects based on the context in which they can be expected to be found. This relates to the lost-keys analogy in that when 
searching from room to room, one would only look in probable locations, such as the kitchen table. This concept of 
context-based classification has been applied by Torralba, Murphy, and Freeman to only search for certain objects in 
relevant locations3.  
 
Our chosen method of object classification inherently possesses a large degree of modularity. If multiple objects are to 
be detected, then each cascade of weak classifiers could simply be swapped out with a new set that has been trained to 
detect each object in question. The detection efficiency of a trained set of boosted classifiers is sufficient to pass control 
to another more discriminating detection mechanism without compromising real-time performance. Some possible 
second-stage detection mechanisms could include using ROBART III's (Figure 1) bore-sighted laser to lock on and fire at 
a detected object1, or utilizing a text-parser to interpret letters on a detected license plate or sign 10.   
 
To test the robustness of Adaboost, we investigated the applicability of Dlagnekov's license-plate detection method to 
generic object detection4. To represent a generic object, we chose soda cans, making it possible to investigate the 
performance of our particular implementation of Adaboost with respect to scale, background clutter, and changes in 
specularity. 
 
2.1 First experiment setup 
 
2.1.1 Building the training set 

 
Figure 2:  This is an example of an extracted frame where each soda can region has been manually labeled. 

 
We initially set up Diet-Pepsi cans around a room with a significant amount of clutter in the background. The cans were 
randomly placed at a variety of distances from ROBART III. Each can was rotated a different amount about its principal 
axis. This added rotation was used to extract features of the soda cans from a variety of angles and to reduce the 
influence of the prominent Diet Pepsi logo on the detection process. (If a robot’s mission was to detect IEDs, the 
responsible parties would most likely not put their identifying logos on the outside of their products to provide 
convenient discriminating features.) Footage from ROBART III’s head-mounted camera was captured under three 
different lighting configurations (at a pixel resolution of 320x240 with a frame-rate of 3 frames-per-second) as three 
separate MPEG videos. Each video was then divided into two equal segments, and a portion from each segment pair was 
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randomly selected, resized to a resolution of 720x480, and extracted as a sequence of bitmap images. These images were 
set aside to build the training set. The remaining portions were merged together and set aside to be used as test footage 
for our final detection method. Each soda-can image was manually labeled in every 8th frame of the bitmap training 
images and sorted into four separate groups based on their image dimensions (Figure 2).  
 
Instead of using a single strong classifier to detect soda cans at multiple scales, a separate strong classifier was trained 
for each scale. According to Dlagnekov’s results, this approach yields a higher license-plate-detection rate when 
compared to a single strong classifier trained across multiple scales of training images4. Since soda-can images can exist 
in video footage at a multitude of scales with only a fixed window size for each classifier to detect them, using several 
different classifier scales helps reduce the amount of background clutter that may exist in situations where a smaller-
scale soda can is present in a large input window. In order to further reduce the influence of background clutter on the 
detection process, negative training examples were used in conjunction with the positive training examples. Positive 
training examples are images of the object to be detected (i.e., soda-can images) and negative training examples are 
images of anything that is considered not to be a soda can (i.e., background clutter). In this experiment, negative training 
examples were randomly extracted from labeled images in areas that were not labeled as soda cans. An illustration of 
some positive training examples from an earlier experiment can be seen in Figure 3 below. 

 
Figure 3:  This is a composite image of an earlier set of training images showing four different scales of acquired training images. 
Note that the black areas in the bottom-right regions of the composite images are blank, indicating no soda can images are present. 
 
2.1.2 Generating features 
 
In order to train strong classifiers to detect soda-cans, a total of 2400 features were generated to create weak classifiers 
for Adaboost. These features were the same Haar-like features used by Dlagnekov in his license-plate detection 
algorithm4. Each feature consisted of dividing the input image into between two and seven equal vertical or horizontal 
portions. Each portion contains the mean of one of the following measurements of the image: X-derivative, Y-derivative, 
variance of these derivatives, or pixel intensities. The sum of the values in a particular set of the regions was then 
subtracted from the sum of the values in the remaining set of regions. This is similar to the way in which Chen and 
Yuille10detect text features in an image. Although we did not specifically extract text from the soda cans, these features 
did reasonably well in discriminating soda cans from background clutter during the Adaboost training phase.  
 
2.1.3 Training strong classifiers 
 
As mentioned before, a separate strong classifier was trained for each of four groups of soda-can training images. The 
sliding-window region for each scale of strong classifier is of size: 54x83, 30x47, 35x32, and 42x60. These window 
sizes were chosen by performing K-means clustering (for K=4) using the pixel width and height of each positive training 
image14. Each strong classifier was trained for 14 rounds to build a six-stage cascade of classifiers. Using a cascade 
greatly speeds up the object-detection process by rejecting a majority of non-soda-can regions. Instead of passing every 



SPIE Proc. 6230: Unmanned Systems Technology VIII,  
Defense Security Symposium, Orlando, FL, April 18-20, 2006 

sub-region of the input image through all of the weak classifiers selected by Adaboost during the detection phase, most 
regions will be rejected after passing through the first few weak classifiers. In order to achieve a positive classification, 
an input region must pass through all stages of the cascade. However, this is a rare occurrence if we assume that most of 
the input image consists of non-soda can regions. A cascade of classifiers was also used by Dlagnekov to optimize his 
license-plate detection algorithm4.  After training each strong classifier, the false-positive classifications from each were 
saved. Each strong classifier was then retrained using 1000 false positives from its previous training session. This 
approach allows each classifier to focus on training with ”harder” examples, thereby increasing the classification rate of 
the resulting detection algorithm. 
 
2.2. Second experiment setup 
 
2.2.1 Building the training set 

 
Figure 4:  This is an example of an extracted video frame that was used to build the training set. 

 
As a follow-up to the previous case, we performed an additional experiment to determine if Dlagnekov’s license-plate 
detection method was effective enough to detect soda cans in real-time using two separate can orientations: horizontal 
and vertical. The training set was gathered by setting ROBART III at a fixed distance from a box (Figure 4). The 
background used was relatively static and contained a significant amount of clutter. Using this setup, 43 separate MPEG 
video files were captured, where each video was approximately 10 seconds long. Between each video capture, several 
Diet Pepsi cans were placed in a variety of locations around the box and rotated by various amounts, while maintaining 
either a horizontal or a vertical orientation.  Each soda-can image was then hand-labeled to extract a total of 410 vertical 
and 420 horizontal images. Each of these labeled soda-can regions was next offset randomly by up to 1/8 of their width 
and 1/4 of their height to generate additional positive training examples, as Dlagnekov did for his license-plate detection 
method4. This resulted in 4,444 positive training examples of vertically oriented and 4,554 of horizontally oriented soda 
cans. In addition, each strong classifier was given 23,200 negative training examples that had been randomly extracted 
from video footage containing only the aforementioned box, with no soda cans present.    
 
2.2.2 Training the classifiers 
 
In contrast to the previous experiment, only two separate strong classifiers were trained: one for horizontally-oriented 
and one for vertically-oriented soda cans. The window sizes for each strong classifier were determined by taking the 
average window size of the positive training set for each can orientation. This resulted in window sizes of 17x27 pixels 
for the vertically-oriented soda cans and 30x14 pixels for the horizontally-oriented soda cans. Each classifier was then 
trained in the same manner as in the previous experiment, where 14 rounds of training were executed to build a six-stage 
cascade of classifiers. To minimize the effect of camera-lens distortion and to increase the efficiency of detection, only a 
central 161x184 sub-window of each image was used to collect negative training examples. This same sub-window was 
later used to define a sub-area in which to scan for soda cans during the detection process. 
 
2.3 Results 
 
2.3.1. Training error rates – experiment 1 
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After the four strong classifiers were trained, the results indicated that training was moderately successful with error rates 
indicated by the graph in Figure 5 below. However, since the set of strong classifiers must be sequentially applied to the 
input image, the cumulative false-positive rate of the strong classifiers has to be taken into account when determining the 
overall training-error rate, which results in a collective false positive training-error rate of 85.49 percent. In addition, 
each strong-classifier error rate merely indicates how well Adaboost was able to fit the weak classifiers to the training 
data, showing that the training data can be learned reasonably well using the current set of features. However, this gives 
little indication of the actual performance of the strong classifiers on new input images. The global error rate for the first 
layer of each cascade is shown in Figure 5. In this graph, the dark black line corresponding to the strong classifier with a 
54x83 window consistently has the lowest training error. This makes sense, because a larger soda-can image contains 
more pixel information than a smaller image, which implies that larger images would have more discernable features 
than smaller images. In fact, the very first weak classifier chosen has a weighted training error rate of only 15 percent, 
while the first weak classifiers corresponding to detection windows of size 35x32 and 30x47 have error rates of roughly 
twice this amount. Most of the error exhibited in Figure 5 is a result of false-positive classifications. The false-negative 
rates for all four window scales start at less than 1 percent and drop very quickly towards zero after only a few rounds of 
training. However, the false-positive rates for all four window scales start at between 15 percent and 35 percent and 
decline to between 1 percent and 7 percent. This seems to indicate that the features we chose to train Adaboost are not 
extracting enough information from the lower-resolution soda-can images, causing the weak classifiers to have a 
somewhat difficult time discriminating between soda cans and their background. For these four scales of strong 
classifiers, the first stage of each cascade was trained for 14 rounds. Adaboost could be trained for more rounds to 
decrease this error rate. The main drawback to doing this is that each region being classified would have to be run 
through more classifiers, which would significantly decrease the performance of this detection method. 

 
Figure 5 Global error rates from training four different strong classifiers for soda cans. 

 
 
2.3.2 Best features selected by Adaboost – experiment 1 
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Among the top four features selected by Adaboost (Figure 6), none corresponded purely to pixel brightness values. 
Dlagnekov’s experience was similar, which he attributed to the variation in lighting conditions4. The first feature selected 
by Adaboost takes the average X-derivative from the black regions and subtracts it from the average derivative of the 
blue regions. Intuitively, this might correspond to the vertical edges of the can or the region containing its logo. The 
second feature selected by Adaboost takes the mean of the difference in the variance of the Y-derivative from the image 
region to be classified. This particular feature appears to take into account the top and bottom of the soda can to perform 
classification. 
 

 
Figure 6 A 58x83 soda-can image followed by the top four weak features selected by Adaboost for the classifier of that scale. The 
colors represent: Blue - mean of X derivative, Green - mean of variance of Y derivative, Red - mean of Y derivative, White – mean of 
variance of X derivative, Black - negative of colored regions. 
 
2.3.3 Test results – experiment 1 
 
In order to test the performance of the four strong classifiers, we ran each separately on the same set of video footage, 
which consisted of images of soda cans that were captured during the training stage, but not labeled for use in the 
training set. The scenario used for testing involved ROBART III moving towards another robot (the iRobot ATRV shown 
in Figure 7) with soda cans placed on and around it. ROBART III then backed away and headed towards a Pepsi vending 
machine with soda cans sitting on the floor in front of it. We ran each strong classifier on the test video using 
Dlagnekov’s detection framework, and adjusted the threshold value on the strong classifier until a reasonable balance 
was achieved between true-positive and false-positive classifications. Each positively classified region in each frame of 
the test video was then marked with a yellow rectangle. By visually inspecting each frame of the marked video footage 
for the frequency of correctly placed yellow rectangles, the frames containing the highest ratio of true-positive to false-
positive classifications were identified. Two of these frames are shown below in Figures 7 and 8. 
 

                  Figure 7 54x83 with threshold 1.3                                     Figure 8 30x47 with threshold 1.5 
 
The strong classifier at scale 54x83 (Figure 8) with a threshold value of 1.5 seemed to perform the best overall for 
classifying soda cans of a similar scale. During training, this strong classifier similarly performed better than the others at 
learning its training set. Once again, this is probably due to the fact that this classifier was run on images that were larger 
than the others and thus contained more discriminate features. Another reason for the high classification rate of this 
strong classifier could be the use of clustering applied to each detected location. To reduce the number of false positives, 
all regions that have been classified as containing soda cans are clustered. If more than five classifications exist in a 
particular cluster, then the average location in this cluster is marked with a yellow rectangle. This technique decreases 
the number of false positives that may result from noise. One drawback to this method is that true-positive classifications 
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may be off-center as a result of false-positive classifications biasing each cluster centroid, which may explain the left-
most rectangle in Figure 7. This clustering method was also used by Dlagnekov in his license-plate detection 
method4.One area of the background that consistently caused false-positive classifications was the metal wheels of the 
ATRV robot, as seen in Figure 7. This may be attributed to the similarity between the specularity of the soda cans and the 
metal hubs.  The image in Figure 8 exhibits the best classification rate achieved in this experiment. This high 
classification rate is most likely due to the relative sparseness of the background, making our chosen set of features 
suitable for distinguishing soda cans in this particular image. 
 
2.3.4 Training error rates – experiment 2 
 
After the two strong classifiers were trained, the training error rates were fairly low as shown in Figure 9 below. When 
compared to the results from the previous experiment, the global error rates of these 17x27 and 30x14 strong classifiers 
are approximately the same as those of the 35x32 and 42x60 strong classifiers. However, the 54x83 strong classifier 
from the previous experiment had a significantly lower training error rate than either of the strong classifiers in this 
experiment. This is most likely due to the aforementioned fact that higher resolution images contain more usable 
information than lower resolution images, causing higher resolution images to have more distinct features.   
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Figure 9 Global error rates from training two different strong classifiers for soda cans. The window size of each classifier is 17x27 

and 30x14 for vertically and horizontally oriented soda cans, respectively. 
 
 

2.3.5 Test results – experiment 2 
 
In order to test the performance of the two strong classifiers, each strong classifier was executed on video footage that 
had been excluded from the training set prior to training. The strong classifiers were executed sequentially on the test 
video using a modified version of Dlagnekov’s license-plate detection framework. As in the previous experiment, each 
location classified as containing a soda can was stored in a set of 20 clusters. If any particular cluster exceeded a 
threshold of 50 detections, then the centroid of that cluster was determined to contain a soda can. A yellow rectangle was 
then drawn at each average cluster location in each image being classified. One drawback to this method of clustering is 
that each strong classifier can only detect a maximum of 20 individual soda cans. One possible solution to this problem 
would be to apply K-means clustering14 to the regions classified as containing soda cans, though this would decrease the 
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efficiency of our detection method. Using this setup, the central region of each image in a stream of video was scanned 
and marked at locations determined to contain soda cans. In one particular set of test footage, a 100-percent detection 
rate was achieved in real time with no false positives (Figure 10).  
 

 
Figure 10:  Real-time detections of test video footage from ROBART III’s camera 

 
Surprisingly, the detection rectangles around the horizontally-oriented soda cans are lined up better than the rectangles 
around the vertically-oriented soda cans. This is most likely a result of lens distortion. One obvious manifestation of this 
lens distortion can be seen by observing the shape of the wooden box in the center of the image. In reality, the box has 
flat parallel edges, yet it appears convex in this image. The offset rectangle around the vertically-oriented soda can at the 
top of the image probably resulted from averaging a cluster consisting of true-positive and false-positive detection 
regions. The offset rectangle at the bottom of the image was initially aligned very well with the soda can. In the later 
portion of the video from which this frame was extracted, this rectangle drifts to the upper-right. This is probably a result 
of a combination of noise in the video stream with the perspective distortion of this particular soda can. Despite these 
anomalies, the detection windows are still aligned well enough to extract coordinates that allow ROBART III to aim the 
pneumatically-powered weapon surrogate.  
 
 
 

3. MOTION AND HUMAN-PRESENCE DETECTION 
 
The need to detect motion from a moving platform has become an important requirement for robotics.   As robots 
become increasingly common in populated areas, their ability to effectively co-exist with humans will depend on their 
ability to perceive and process information about surrounding activities.  For example, physical security robots have the 
specific mission of detecting and reporting motion.   
 
While motion detection for physical security applications involving static cameras is now a common and mature 
technology, it is not a solved problem for mobile applications.   The problem of detecting motion from a moving 
platform is substantially more complex since a mobile robot must consider its constantly changing visual surroundings 
and be capable of detecting motion while it is on the move.  Robust solutions to this challenging problem may require 
detailed knowledge of robot motion and a model of the surrounding environment.  A variety of vision-based techniques 
have been applied to motion detection on the move with some success6, 7. However, most of these techniques are either 
too computationally complex for integration on small, i.e. man-portable, robots or make assumptions about the 
environment that limit their use.     
 
3.1 Laser/vision data fusion 
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We approached the problem of motion detection on-the-move by focusing on detecting human presence from a moving 
robot in cluttered indoor and outdoor environments.   This project was sponsored by the Defense Threat Reduction 
Agency in collaboration with the University of Texas Applied Research Laboratory, Austin, TX, and the Idaho National 
Laboratory, Idaho Fall, ID.  To accomplish the task of detecting human presence from a moving platform with limited 
computational resources, we used two-stage sensor fusion.  The first stage involves using a scanning laser to detect initial 
changes, while second stage involves applying image processing to thermal imaging data to verify any potential human 
presence. 
 
The Idaho National Laboratory (INL), SSC SD’s strategic partners under the Technology Transfer project, adapted ladar-
based simultaneous localization and mapping (SLAM) technology developed by the Stanford Research Institute, yielding 
a change-detection-on-the-move capability referred to as real-time occupancy change analysis (ROCA) 12.  Once a map 
representing the operating area is produced, the robot uses the occupancy grid from the SLAM algorithm to detect 
subsequent changes.  Because change detection is based on an adaptive and persistent background model, the disparities 
that occur outside the sensor range of the robot are detected when the robot re-visits the area. The location of each 
perceived disparity can be sent as a vector to supporting sensors for further assessment.   

 
The ROCA algorithm performs an excellent job of detecting physical changes in the environment.  Ad-hoc testing results 
indicate a very good detection rate with a low false-alarm rate for detecting changes on the scale of a human moving 
within approximately 20 meters of the robot.  However, change detection alone is not sufficient for human presence 
detection, as moving changes in the environment, such as re-arranged furniture or waving tree limbs, are flagged as 
changes.    
 
Therefore, a simple data-fusion method known as time-gated windowing was explored for use in determining if the 
observed change in the environment was due to human presence.   This method is based on two assumptions:  1) people 
will emit more thermal radiation than their surroundings and 2) the aspect ratio of height to width of the thermal “hot 
spot” emitted by a human is 4:1 or greater.      The time window is initiated by an occupancy change detected by the 
ROCA system.  The robot’s pan-tilt mechanism is used to direct a thermal imager at the detected change, and several 
snapshots are recorded as digital images.  The acquired images are then segmented by extracting “hot spots” from each 
image using an empirically calculated threshold value.  (This threshold value was determined offline by analyzing 
thermal images of humans at various distances from the thermal imager.)  The vertical aspect ratio of each “hot spot” is 
then calculated, and ratios of 4:1 or greater are designated as likely human presence.    
 
3.2 Thermal verifier experimental setup 
 
A simple proof-of-concept experiment was performed to verify the viability of using ROCA and a thermal imager as a 
robot payload for human presence detection.   The experiment consisted of having people walk in front of the test robot, 
and verifying three properties of the system: 1) that human movement was correctly detected as occupancy changes by 
ROCA, 2) that the thermal imager could be aimed accurately enough at a moving person to acquire a quality thermal 
image, and 3) that the thermal human-verification algorithm confirmed that a human was present in the snapshot images. 
The experiment took place indoors, and involved five human test subjects who each performed three trials.   First the 
robot was allowed to explore an open lab area with an area of approximately 20meters by 25meters, and develop a map 
representation of the lab.  Each subject was then introduced into the lab area, one at a time, and instructed to move 
however they wanted and then leave the lab area.  The output of the data fusion system was logged for analysis.    
 
3.3 Thermal verifier results 
 
Five people each performed three trials, for a total of 15 trials.  The SLAM-based change detection system had a 0% 
false alarm rate and 100% detection rate during the limited experiment.  That is, all changes indicated by the robot were 
actual changes to the environment (moving humans).  The thermal human presence verification algorithm reported 5 
false alarms while left running continuously during the experiment.  However, because of the accuracy of the ROCA 
system, the overall system had a 0% false alarm rate.  For the overall system to report a false alarm, both sensor 
components must simultaneously report false alarms.  It should be noted, however, that these results were taken from a 
very limited experiment conducted in ideal lab conditions.  Further, more extensive testing in an uncontrolled, outdoor 
environment is required to verify the effectiveness of the system in a real-world application.   
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4. TELEOPERATED UAV CONTROL 

 
Computer vision algorithms allow the development of new capabilities for robotic systems.  We demonstrate ROBART 
III teleoperating a remote-controlled blimp, shown in figure 8.  The remote control radio link is interfaced to ROBART 
III’s digital IO control, allowing ROBART III to teleoperate the UAV with adjustments to velocity and altitude.    
ROBART III tracks the position of the blimp through an object detection and classification system similar to that 
described in 2.   Our initial efforts focused only on having ROBART III maintain the blimp’s altitude.  Further 
development will allow ROBART to teleoperate the blimp to given waypoint positions.   

 
Figure 11  ROBART III teleoperating a 3-foot diameter Mylar aerostat 

 
5.  CONCLUSIONS  

5.1 Object detection 
 
We have determined that Dlagnekov’s license-plate detection method is fairly robust for detecting soda cans without 
additional modifications to the set of generated features. We have, however, identified several shortcomings that suggest 
further research is required to pursue our long-term goal of achieving generic real-time object detection and recognition 
for mobile robots. Our results so far seem to indicate that an Adaboost-based implementation using multiple strong 
classifiers performs well with real-time efficiency against a somewhat static background. However, backgrounds against 
which the strong classifiers have not been trained cause numerous false-positive classifications to occur. In addition, the 
amount of time required to detect multiple classes of objects in each input image increases very rapidly as additional 
strong classifiers are sequentially employed, thereby undermining the real-time efficiency of our detection method. 
Furthermore, the introduction of multiple strong classifiers would reduce the robot's ability to eliminate false-positives, 
since the overall false-positive rate of the detection method is the sum of the false-positive rates from successively 
applied strong classifiers. Despite these shortcomings, a long-term solution to the problem of achieving real-time generic 
object detection and recognition for mobile robots may in part be solved through the use of an Adaboost-based object-
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detection method. Although our detection method would not work well as the primary method for detecting objects in a 
cluttered environment, it might work well as an intermediate layer of detection. 

 
5.1 Motion and human-presence detection 
 
Sensor fusion has been a key method of achieving reliable performance in robotics, a common example being the  
Kalman filter used to fuse data from multiple navigation sensors and improve the accuracy of robot navigation and 
localization13.   However, sensor fusion has been less rigorously applied to computer vision applications.  Computer 
vision applications for robots typically suffer from two shortcomings:  computational complexity and the failure to 
gracefully handle changes in perspective, scale, and lighting experienced in dynamic, unpredictable real-world 
environments.  Thermal verification demonstrates how even simple data fusion can assist in addressing these 
shortcomings.  The primary driver of the computational complexity of computer vision applications is the large visual 
area processed.  Sensor fusion can reduce image space dramatically, allowing vision routines to focus on small area 
rather than an entire scene.  In this case, the scanning laser reduces the search space of the thermal verifier in both time 
and space.  The computer vision routine only runs when motion is detected by the laser, and operates over a much 
smaller area, defined by the laser detected disparity.   This reduces the computational complexity by at least an order of 
magnitude as compared to a vision system continuously searching the entire scene continuously.  This approach is 
analogous to some human behaviors, in that we only visually inspect things closely when cued by unusual noises or 
motions.    
 

 
6. FUTURE WORK 

 
In this initial effort on generic object detection, we focused mainly on applying simple and easy to compute features to 
every sub-window of an input image from a single camera. Like humans, robots often use multiple sensors to interact 
with their environment. Some of these sensors may be used to offset a majority of the workload from an Adaboost-based 
implementation. This would enable an Adaboost-based implementation to use slower-to-compute yet more generalized 
features such as the opponent-color features used by Jain and Healey5. For example, additional sensors could be used to 
detect an anomaly while an Adaboost-based algorithm performs detection only on the region that is classified as an 
anomaly, as will be discussed in section 3.   
 
Dlagnekov’s license-plate detection method performs well in terms of efficiency and robustness to background clutter 
under limited conditions. However, this detection method seems to come up short in terms of rotation-invariance, 
detection rates against multiple backgrounds, and efficiently detecting numerous classes of objects. To improve 
invariance to rotation and scale, a method such as D. Lowe’s Scale-Invariant Feature Transform (SIFT) 9 or Sivic and 
Zisserman’s Video Google8 could be investigated. As Dlagnekov observed when detecting the make and model of 
automobiles, SIFT can be used to achieve very high detection rates at the expense of a hefty performance cost when 
detecting a large variety of objects. For instance, Dlagnekov ran SIFT using a database of 1,102 different automobile 
images and achieved a classification rate of 89.5 percent, where each object classification took 30 seconds4. A SIFT-
based implementation may be able to achieve real-time detection rates if the number of objects in its database is reduced 
while other supplementary methods are used to maintain overall robustness.  
 
For instance, some sort of context-based classification3 could be used to limit the set of classifiable objects based on the 
environment in which they can be expected to be found. In addition, the locations of an image in which to search for 
objects of interest could be narrowed down by utilizing data collected from other sensors on the robot.  Numerous 
Adaboost classifiers with lower detection rates could also be used to significantly reduce the number of regions of an 
image which should be searched for objects. These classifiers could be trained using a very low number of detection 
layers that still eliminate most of the background regions. Regions detected by each classifier could then be passed to a 
more accurate detection algorithm or its location could be acquired and passed to another sensor on the robot for further 
processing. While Adaboost alone may not be suitable for generic object detection, it may at least play a supporting role 
in the future of generic object recognition for mobile robots. 
 
From our research, we have developed a soda-can detector that works well under somewhat ideal circumstances. Despite 
these constraints, the results show promise for detecting some objects well in certain contexts. Our detection method 
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could serve as an intermediate layer in the overall detection and classification of signs on doors. For instance, ROBART 
III could first use its laser scanner to detect the presence of a door. It could then precisely align itself with the door to 
provide conditions conducive to detecting objects using the boosted classifier mentioned in this paper.   This classifier 
could then be used to detect signs on the door, which is a simpler problem than detecting soda cans. Once a sign is 
detected, the words on the sign could be interpreted using an optical character recognition algorithm. This way, 
conditions that facilitate optimal performance for our detection method could be optimally provided by the robot.  Rather 
than focusing on a large catch-all object-detection method, we have concluded that a robot may be better able to interact 
with its environment if it is equipped with many smaller, specialized detection methods that can be applied appropriately 
once the robot establishes a suitable context for the deployment of each.  Our future work will focus on performing 
robotic vision using the full capabilities of the robot’s navigational and sensing capabilities, rather than performing 
computer vision as an isolated task.   
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